If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-5x=12
We move all terms to the left:
4x^2-5x-(12)=0
a = 4; b = -5; c = -12;
Δ = b2-4ac
Δ = -52-4·4·(-12)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{217}}{2*4}=\frac{5-\sqrt{217}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{217}}{2*4}=\frac{5+\sqrt{217}}{8} $
| 9-11c=-14c+6c+18 | | 17a-14a-2a+4a-4a=18 | | -28=-6+2(y-2) | | 7^3x-4=41 | | 19-13z-2=-17-13z | | 2x+3-5x=3x+5 | | 12p-12p+5p=15 | | -7z+2z+11z=12 | | 9+3x=-8x+31 | | (3x+1)2=-4 | | 4m=8=-13=7m | | 13=w/25 | | 6(y+2)-4=-0 | | -12+6f+2f=6f+20 | | 6x²+12x-24=0 | | x2+33=4x+7 | | 3z=849 | | 5t+210t=41790 | | 3(7b-15)=17(b-3) | | 6g-10=-10+6g | | 65x=x+15 | | 3z=869 | | 3u+4=2u+10 | | 13=q/21 | | 5v-4v=6 | | 2y–4=14 | | 5t+10=41790 | | -8(b=3) | | 62=r/2 | | -3j+8=-8-j | | -7n+33=9 | | 5=42+p |